Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Pathogens ; 13(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535605

ABSTRACT

The potential danger to livestock from African animal trypanosomiasis is well known. However, the trypanosome species circulating in cattle and their genetics are poorly understood. After different alignments according to three regions (ITS1, gGAPDH and rRNA gene) of the trypanosome genome, phylogenetic analyses were used to show the genetic diversity of the different species that were circulating in the cattle in three regions (Bagoue, Poro and Tchologo) of Côte d'Ivoire. These analyses were performed by alignment of ITS1; by alignment of partial 18S, ITS1, 5.8S, ITS2 and partial 28S rRNA genes; and by alignment of gGAPDH gene with sequences of Trypanosomes found in GenBank. Three species were identified (T. vivax, T. theileri and T. congolense) in the cattle in the three northern regions of Côte d'Ivoire. T. vivax and T. theileri were the most abundant species in the present study. Contrary to the other primers used in this study, the ITS1 primers were not able to amplify T. theileri. We observed mixed infections between T. theileri and the other two species identified (T. vivax and T. congolense). As far as primers are concerned, in some cases, rRNA was able to identify the same species of trypanosomes that the ITS1 and gGAPDH primers were able to identify. Two main distinct groups of T. theileri complex were identified. The T. congolense and T. vivax strains were close to African strains, such as those from Kenya, Nigeria and Cameroon, unlike the T. theileri strain. Three trypanosome species (T. vivax, T. theileri and T. congolense) circulate in cattle in the Savannah district of Côte d'Ivoire. The genetic diversity of the trypanosome species encountered in this study cannot be classified as intraspecies according to geographical area and breed of cattle they infect.

2.
Parasite ; 30: 36, 2023.
Article in English | MEDLINE | ID: mdl-37728508

ABSTRACT

African trypanosomoses, whose pathogens are transmitted by tsetse flies, are a threat to animal and human health. Tsetse flies observed at the military base of the French Forces in Côte d'Ivoire (FFCI base) were probably involved in the infection and death of military working dogs. Entomological and parasitological surveys were carried out during the rainy and dry seasons using "Vavoua" traps to identify tsetse fly species, their distribution, favorable biotopes and food sources, as well as the trypanosomes they harbor. A total of 1185 Glossina palpalis palpalis tsetse flies were caught, corresponding to a high average apparent density of 2.26 tsetse/trap/day. The results showed a heterogeneous distribution of tsetse at the FFCI base, linked to more or less favorable biotopes. No significant variation in tsetse densities was observed according to the season. The overall trypanosomes infection rate according to microscopic observation was 13.5%. Polymerase chain reaction (PCR) analyses confirmed the presence of Trypanosoma vivax and T. congolense forest type, responsible for African animal trypanosomosis. Our findings suggest that there is a risk of introduction and transmission of T. brucei gambiense, responsible for human African trypanosomiasis, on the study site. This risk of transmission of African trypanosomes concerns not only the FFCI base, but also inhabited peripheral areas. Our study confirmed the need for vector control adapted to the eco-epidemiological context of the FFCI base.


Title: Écologie des mouches tsé-tsé et risque de transmission des trypanosomes africains lié à une zone forestière protégée dans une base militaire de la ville d'Abidjan, Côte d'Ivoire. Abstract: Les trypanosomoses africaines, dont les agents pathogènes sont transmis par les mouches tsé-tsé, constituent une contrainte pour la santé animale et humaine. Des mouches tsé-tsé observées dans la base militaire des Forces françaises en Côte d'Ivoire (base FFCI) ont probablement été impliquées dans l'infection et la mort de chiens militaires. Des enquêtes entomologiques et parasitologiques ont été menées pendant la saison pluvieuse et la saison sèche à l'aide de pièges "Vavoua" afin d'identifier les espèces de mouches tsé-tsé, leur distribution, les biotopes favorables et leur source de nourriture ainsi que les trypanosomes qu'elles hébergent. Au total 1185 mouches tsé-tsé de l'espèce Glossina palpalis palpalis ont été capturées, ce qui correspond à une densité apparente moyenne élevée de 2,26 tsé-tsé/piège/jour. Les résultats ont montré une distribution hétérogène des tsé-tsé dans la base FFCI en lien avec des biotopes plus ou moins favorables. Aucune variation significative des densités de tsé-tsé n'a été observée en fonction de la saison. Le taux d'infection global par les trypanosomes était de 13,5 % selon l'observation microscopique. Les analyses PCR ont confirmé la présence de Trypanosoma vivax et T. congolense type forêt, responsable de la trypanosomose animale africaine. Nos résultats suggèrent qu'il existe un risque potentiel d'introduction et de transmission de T. brucei gambiense responsable de la trypanosomiase humaine africaine dans la zone d'étude. Ce risque de transmission des trypanosomes africains concerne non seulement l'intérieur de la base FFCI, mais aussi les espaces périphériques habités. Notre étude a confirmé la nécessité de mener une lutte antivectorielle adaptée au contexte éco-épidémiologique de la base FFCI.


Subject(s)
Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Animals , Dogs , Humans , Cote d'Ivoire/epidemiology , Military Facilities , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/veterinary , Forests
3.
Med Trop Sante Int ; 3(1)2023 03 31.
Article in French | MEDLINE | ID: mdl-37525637

ABSTRACT

Human African Trypanosomiasis (HAT) is caused by Trypanosoma brucei which is transmitted by the tsetse fly insect vector (Glossina spp). It is one of the 20 Neglected Tropical Diseases (NTD) listed by the WHO. These diseases affect the poorest and most vulnerable communities, for which the WHO has established a dedicated 2021-2030 roadmap. At the time of Alphonse Laveran, HAT devastated the African continent. In the 1960s, the disease was nearly under control, but it strongly re-emerged in the 1990s. A coordinated effort of all stakeholders, with national control programs as the main actors, a strong contribution of research and important donations by the private sector, allowed to decrease the HAT burden significantly. Since 2018, less than 1000 cases are detected annually. We here review new diagnostics, treatments and vector control tools that have been implemented jointly and successfully in several endemic countries.The next key challenge will be to sustain the gains. Newly emerging research questions include long-term carriage of trypanosomes and adaptation of tools to low prevalence contexts. Challenges out of the research area comprise the continued need of funding, maintenance of dedicated human resources, and the key question of access. Sustainable elimination as "interruption of transmission", which is the 2030 NTD roadmap target, can be reached, if these challenges are solved. We stress the importance of continuing to combine the efforts in the fight against the disease, because sustainable elimination of HAT is the best long-term prevention strategy against re-emergence. As such, HAT elimination can serve as an example for other infectious diseases.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Tsetse Flies , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosoma brucei gambiense , Insect Vectors , Neglected Diseases/epidemiology
4.
PLoS Negl Trop Dis ; 17(7): e0011514, 2023 07.
Article in English | MEDLINE | ID: mdl-37523361

ABSTRACT

BACKGROUND: Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) was targeted for 2020. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and this was particularly challenging as the country still reported around a hundred cases a year in the early 2000s. This article describes the strategies implemented including a mathematical model to evaluate the reporting results and infer progress towards sustainable elimination. METHODS: The control methods used combined both exhaustive and targeted medical screening strategies including the follow-up of seropositive subjects- considered as potential asymptomatic carriers to diagnose and treat cases- as well as vector control to reduce the risk of transmission in the most at-risk areas. A mechanistic model was used to estimate the number of underlying infections and the probability of elimination of transmission (EoT) was met between 2000-2021 in two endemic and two hypo-endemic health districts. RESULTS: Between 2015 and 2019, nine gHAT cases were detected in the two endemic health districts of Bouaflé and Sinfra in which the number of cases/10,000 inhabitants was far below 1, a necessary condition for validating EPHP. Modelling estimated a slow but steady decline in transmission across the health districts, bolstered in the two endemic health districts by the introduction of vector control. The decrease in underlying transmission in all health districts corresponds to a high probability that EoT has already occurred in Côte d'Ivoire. CONCLUSION: This success was achieved through a multi-stakeholder and multidisciplinary one health approach where research has played a major role in adapting tools and strategies to this large epidemiological transition to a very low prevalence. This integrated approach will need to continue to reach the verification of EoT in Côte d'Ivoire targeted by 2025.


Subject(s)
Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/parasitology , Cote d'Ivoire/epidemiology , Trypanosoma brucei gambiense , Communicable Disease Control , Public Health
5.
Sci Rep ; 12(1): 20086, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418429

ABSTRACT

A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven't been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.


Subject(s)
Trypanosomiasis, African , Tsetse Flies , Animals , Humans , Machine Learning , Databases, Factual , Neglected Diseases , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Parasite ; 29: 25, 2022.
Article in English | MEDLINE | ID: mdl-35543528

ABSTRACT

The World Health Organisation has targeted the elimination of human African trypanosomiasis (HAT) as zero transmission by 2030. Continued surveillance needs to be in place for early detection of re-emergent cases. In this context, the performance of diagnostic tests and testing algorithms for detection of the re-emergence of Trypanosoma brucei gambiense HAT remains to be assessed. We carried out a door-to-door active medical survey for HAT in the historical focus of Batié, South-West Burkina Faso. Screening was done using three rapid diagnostic tests (RDTs). Two laboratory tests (ELISA/T. b. gambiense and immune trypanolysis) and parasitological examination were performed on RDT positives only. In total, 5883 participants were screened, among which 842 (14%) tested positive in at least one RDT. Blood from 519 RDT positives was examined microscopically but no trypanosomes were observed. The HAT Sero-K-Set test showed the lowest specificity of 89%, while the specificities of SD Bioline HAT and rHAT Sero-Strip were 92% and 99%, respectively. The specificity of ELISA/T. b. gambiense and trypanolysis was 99% (98-99%) and 100% (99-100%), respectively. Our results suggest that T. b. gambiense is no longer circulating in the study area and that zero transmission has probably been attained. While a least cost analysis is still required, our study showed that RDT preselection followed by trypanolysis may be a useful strategy for post-elimination surveillance in Burkina Faso.


Title: Suivi de l'élimination de la Trypanosomiase Humaine Africaine dans le foyer historique de Batié au sud-ouest du Burkina Faso. Abstract: L'Organisation mondiale de la santé a ciblé l'élimination de la trypanosomiase humaine africaine (THA) comme transmission zéro d'ici 2030. Une surveillance continue doit être mise en place pour la détection précoce des cas réémergents. Dans ce contexte, la performance des tests de diagnostic et des algorithmes de test pour la détection de la réémergence de la THA de Trypanosoma brucei gambiense reste à évaluer. Nous avons réalisé une enquête médicale en porte-à-porte pour la THA dans le foyer historique de Batié, au sud-ouest du Burkina Faso. Le dépistage a été effectué à l'aide de trois tests de diagnostic rapide (TDR). Deux tests de laboratoire (ELISA/T. b. gambiense et trypanolyse immunitaire) et un examen parasitologique ont été effectués uniquement sur les TDR positifs. Au total, 5883 participants ont été dépistés, parmi lesquels 842 (14 %) ont été testés positifs dans au moins un TDR. Le sang de 519 TDR positifs a été examiné au microscope mais aucun trypanosome n'a été observé. Le test HAT Sero-K-Set a montré la spécificité la plus faible de 89 %, tandis que les spécificités de SD Bioline HAT et rHAT Sero-Strip étaient de 92 % et 99 %, respectivement. La spécificité d'ELISA/T. b. gambiense et de la trypanolyse étaient respectivement de 99 % (98­99 %) et 100 % (99­100 %). Nos résultats suggèrent que T. b. gambiense ne circule plus dans la zone d'étude et que la transmission zéro a probablement été atteinte. Bien qu'une analyse de moindre coût soit toujours nécessaire, notre étude a montré qu'une présélection par TDR suivie d'une trypanolyse peut être une stratégie utile pour la surveillance post-élimination au Burkina Faso.


Subject(s)
Trypanosomiasis, African , Algorithms , Animals , Burkina Faso/epidemiology , Humans , Mass Screening , Trypanosoma brucei gambiense , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control
7.
PLoS Negl Trop Dis ; 16(1): e0010033, 2022 01.
Article in English | MEDLINE | ID: mdl-34986176

ABSTRACT

BACKGROUND: Work to control the gambiense form of human African trypanosomiasis (gHAT), or sleeping sickness, is now directed towards ending transmission of the parasite by 2030. In order to supplement gHAT case-finding and treatment, since 2011 tsetse control has been implemented using Tiny Targets in a number of gHAT foci. As this intervention is extended to new foci, it is vital to understand the costs involved. Costs have already been analysed for the foci of Arua in Uganda and Mandoul in Chad. This paper examines the costs of controlling Glossina palpalis palpalis in the focus of Bonon in Côte d'Ivoire from 2016 to 2017. METHODOLOGY/PRINCIPAL FINDINGS: Some 2000 targets were placed throughout the main gHAT transmission area of 130 km2 at a density of 14.9 per km2. The average annual cost was USD 0.5 per person protected, USD 31.6 per target deployed of which 12% was the cost of the target itself, or USD 471.2 per km2 protected. Broken down by activity, 54% was for deployment and maintenance of targets, 34% for tsetse surveys/monitoring and 12% for sensitising populations. CONCLUSIONS/SIGNIFICANCE: The cost of tsetse control per km2 of the gHAT focus protected in Bonon was more expensive than in Chad or Uganda, while the cost per km2 treated, that is the area where the targets were actually deployed, was cheaper. Per person protected, the Bonon cost fell between the two, with Uganda cheaper and Chad more expensive. In Bonon, targets were deployed throughout the protected area, because G. p. palpalis was present everywhere, whereas in Chad and Uganda G. fuscipes fuscipes was found only the riverine fringing vegetation. Thus, differences between gHAT foci, in terms of tsetse ecology and human geography, impact on the cost-effectiveness of tsetse control. It also demonstrates the need to take into account both the area treated and protected alongside other impact indicators, such as the cost per person protected.


Subject(s)
Endemic Diseases/prevention & control , Insect Control/methods , Insecticides/pharmacology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Tsetse Flies , Animals , Chad/epidemiology , Cote d'Ivoire/epidemiology , Forests , Humans , Insect Control/economics , Insect Vectors , Trypanosoma brucei gambiense , Trypanosomiasis, African/transmission , Uganda/epidemiology
8.
Open Res Eur ; 2: 67, 2022.
Article in English | MEDLINE | ID: mdl-37645305

ABSTRACT

Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.

9.
PLoS Negl Trop Dis ; 15(12): e0010036, 2021 12.
Article in English | MEDLINE | ID: mdl-34937054

ABSTRACT

BACKGROUND: The existence of an animal reservoir of Trypanosoma brucei gambiense (T. b. gambiense), the agent of human African trypanosomiasis (HAT), may compromise the interruption of transmission targeted by World Health Organization. The aim of this study was to investigate the presence of trypanosomes in pigs and people in the Vavoua HAT historical focus where cases were still diagnosed in the early 2010's. METHODS: For the human survey, we used the CATT, mini-anion exchange centrifugation technique and immune trypanolysis tests. For the animal survey, the buffy coat technique was also used as well as the PCR using Trypanosoma species specific, including the T. b. gambiense TgsGP detection using single round and nested PCRs, performed from animal blood samples and from strains isolated from subjects positive for parasitological investigations. RESULTS: No HAT cases were detected among 345 people tested. A total of 167 pigs were investigated. Free-ranging pigs appeared significantly more infected than pigs in pen. Over 70% of free-ranging pigs were positive for CATT and parasitological investigations and 27-43% were positive to trypanolysis depending on the antigen used. T. brucei was the most prevalent species (57%) followed by T. congolense (24%). Blood sample extracted DNA of T. brucei positive subjects were negative to single round TgsGP PCR. However, 1/22 and 6/22 isolated strains were positive with single round and nested TgsGP PCRs, respectively. DISCUSSION: Free-ranging pigs were identified as a multi-reservoir of T. brucei and/or T. congolense with mixed infections of different strains. This trypanosome diversity hinders the easy and direct detection of T. b. gambiense. We highlight the lack of tools to prove or exclude with certainty the presence of T. b. gambiense. This study once more highlights the need of technical improvements to explore the role of animals in the epidemiology of HAT.


Subject(s)
Disease Reservoirs/parasitology , Swine Diseases/parasitology , Trypanosoma brucei gambiense/isolation & purification , Trypanosoma congolense/isolation & purification , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary , Animals , Animals, Domestic/parasitology , Cote d'Ivoire/epidemiology , Humans , Polymerase Chain Reaction , Swine , Swine Diseases/epidemiology , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/physiology , Trypanosoma congolense/genetics , Trypanosoma congolense/physiology , Trypanosomiasis, African/epidemiology
10.
PLoS Negl Trop Dis ; 15(8): e0009656, 2021 08.
Article in English | MEDLINE | ID: mdl-34460829

ABSTRACT

BACKGROUND: Little is known about the diagnostic performance of rapid diagnostic tests (RDTs) for passive screening of human African trypanosomiasis (HAT) in Côte d'Ivoire. We determined HAT prevalence among clinical suspects, identified clinical symptoms and signs associated with HAT RDT positivity, and assessed the diagnostic tests' specificity, positive predictive value and agreement. METHODS: Clinical suspects were screened with SD Bioline HAT, HAT Sero-K-Set and rHAT Sero-Strip. Seropositives were parasitologically examined, and their dried blood spots tested in trypanolysis, ELISA/Tbg, m18S-qPCR and LAMP. The HAT prevalence in the study population was calculated based on RDT positivity followed by parasitological confirmation. The association between clinical symptoms and signs and RDT positivity was determined using multivariable logistic regression. The tests' Positive Predictive Value (PPV), specificity and agreement were determined. RESULTS: Over 29 months, 3433 clinical suspects were tested. The RDT positivity rate was 2.83%, HAT prevalence 0.06%. Individuals with sleep disturbances (p<0.001), motor disorders (p = 0.002), convulsions (p = 0.02), severe weight loss (p = 0.02) or psychiatric problems (p = 0.04) had an increased odds (odds ratios 1.7-4.6) of being HAT RDT seropositive. Specificities ranged between 97.8%-99.6% for individual RDTs, and 93.3-98.9% for subsequent tests on dried blood spots. The PPV of the individual RDTs was below 14.3% (CI 2-43), increased to 33.3% (CI 4-78) for serial RDT combinations, and reached 67% for LAMP and ELISA/Tbg on RDT positives. Agreement between diagnostic tests was poor to moderate (Kappa ≤ 0.60), except for LAMP and ELISA/Tbg (Kappa = 0.66). CONCLUSION: Identification of five key clinical symptoms and signs may simplify referral for HAT RDT screening. The results confirm the appropriateness of the diagnostic algorithm presently applied, with screening by SD Bioline HAT or HAT Sero-K-Set, supplemented with trypanolysis. ELISA/Tbg could replace trypanolysis and is simpler to perform. TRIAL REGISTRATION: ClinicalTrials.gov NCT03356665.


Subject(s)
Diagnostic Tests, Routine/methods , Trypanosoma brucei gambiense/immunology , Trypanosomiasis, African/diagnosis , Adult , Animals , Antigens, Protozoan/blood , Antigens, Protozoan/immunology , Cote d'Ivoire/epidemiology , Female , Humans , Logistic Models , Male , Middle Aged , Motor Disorders/epidemiology , Predictive Value of Tests , Prevalence , Seizures/epidemiology , Sensitivity and Specificity , Sleep Wake Disorders/epidemiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/physiopathology , Weight Loss
11.
PLoS Negl Trop Dis ; 15(6): e0009404, 2021 06.
Article in English | MEDLINE | ID: mdl-34181651

ABSTRACT

BACKGROUND: Gambian human African trypanosomiasis (gHAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies (Glossina). In Côte d'Ivoire, Bonon is the most important focus of gHAT, with 325 cases diagnosed from 2000 to 2015 and efforts against gHAT have relied largely on mass screening and treatment of human cases. We assessed whether the addition of tsetse control by deploying Tiny Targets offers benefit to sole reliance on the screen-and-treat strategy. METHODOLOGY AND PRINCIPAL FINDINGS: In 2015, we performed a census of the human population of the Bonon focus, followed by an exhaustive entomological survey at 278 sites. After a public sensitization campaign, ~2000 Tiny Targets were deployed across an area of 130 km2 in February of 2016, deployment was repeated annually in the same month of 2017 and 2018. The intervention's impact on tsetse was evaluated using a network of 30 traps which were operated for 48 hours at three-month intervals from March 2016 to December 2018. A second comprehensive entomological survey was performed in December 2018 with traps deployed at 274 of the sites used in 2015. Sub-samples of tsetse were dissected and examined microscopically for presence of trypanosomes. The census recorded 26,697 inhabitants residing in 331 settlements. Prior to the deployment of targets, the mean catch of tsetse from the 30 monitoring traps was 12.75 tsetse/trap (5.047-32.203, 95%CI), i.e. 6.4 tsetse/trap/day. Following the deployment of Tiny Targets, mean catches ranged between 0.06 (0.016-0.260, 95%CI) and 0.55 (0.166-1.794, 95%CI) tsetse/trap, i.e. 0.03-0.28 tsetse/trap/day. During the final extensive survey performed in December 2018, 52 tsetse were caught compared to 1,909 in 2015, with 11.6% (5/43) and 23.1% (101/437) infected with Trypanosoma respectively. CONCLUSIONS: The annual deployment of Tiny Targets in the gHAT focus of Bonon reduced the density of Glossina palpalis palpalis by >95%. Tiny Targets offer a powerful addition to current strategies towards eliminating gHAT from Côte d'Ivoire.


Subject(s)
Insect Control/methods , Insect Vectors/parasitology , Trypanosoma brucei gambiense , Trypanosomiasis, African/prevention & control , Tsetse Flies/parasitology , Animals , Cote d'Ivoire/epidemiology , Humans , Insect Vectors/physiology , Tsetse Flies/physiology
12.
PLoS Negl Trop Dis ; 14(11): e0008738, 2020 11.
Article in English | MEDLINE | ID: mdl-33180776
13.
Exp Parasitol ; 219: 108014, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33011238

ABSTRACT

The objective set by WHO to reach elimination of human African trypanosomiasis (HAT) as a public health problem by 2020 is being achieved. The next target is the interruption of gambiense-HAT transmission in humans by 2030. To monitor progress towards this target, in areas where specialized local HAT control capacities will disappear, is a major challenge. Test specimens should be easily collectable and safely transportable such as dried blood spots (DBS). Monitoring tests performed in regional reference centres should be reliable, cheap and allow analysis of large numbers of specimens in a high-throughput format. The aim of this study was to assess the analytical sensitivity of Loopamp, M18S quantitative real-time PCR (M18S qPCR) and TgsGP qPCR as molecular diagnostic tests for the presence of Trypanosoma brucei gambiense in DBS. The sensitivity of the Loopamp test, with a detection limit of 100 trypanosomes/mL, was in the range of parasitaemias commonly observed in HAT patients, while detection limits for M18S and TgsGP qPCR were respectively 1000 and 10,000 trypanosomes/mL. None of the tests was entirely suitable for high-throughput use and further development and implementation of sensitive high-throughput molecular tools for monitoring HAT elimination are needed.


Subject(s)
Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Real-Time Polymerase Chain Reaction/standards , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/prevention & control , Algorithms , Animals , Blood Specimen Collection/methods , Blood Specimen Collection/standards , DNA, Protozoan/isolation & purification , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Humans , Mice , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Specimen Handling/methods , Specimen Handling/standards , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/blood , Trypanosomiasis, African/diagnosis
14.
PLoS Negl Trop Dis ; 14(9): e0008588, 2020 09.
Article in English | MEDLINE | ID: mdl-32925917

ABSTRACT

BACKGROUND: Significant efforts to control human African trypanosomiasis (HAT) over the two past decades have resulted in drastic decrease of its prevalence in Côte d'Ivoire. In this context, passive surveillance, integrated in the national health system and based on clinical suspicion, was reinforced. We describe here the health-seeking pathway of a girl who was the first HAT patient diagnosed through this strategy in August 2017. METHODS: After definitive diagnosis of this patient, epidemiological investigations were carried out into the clinical evolution and the health and therapeutic itinerary of the patient before diagnosis. RESULTS: At the time of diagnosis, the patient was positive in both serological and molecular tests and trypanosomes were detected in blood and cerebrospinal fluid. She suffered from important neurological disorders. The first disease symptoms had appeared three years earlier, and the patient had visited several public and private peripheral health care centres and hospitals in different cities. The failure to diagnose HAT for such a long time caused significant health deterioration and was an important financial burden for the family. CONCLUSION: This description illustrates the complexity of detecting the last HAT cases due to complex diagnosis and the progressive disinterest and unawareness by both health professionals and the population. It confirms the need of implementing passive surveillance in combination with continued sensitization and health staff training.


Subject(s)
Delayed Diagnosis/economics , Neglected Diseases/diagnosis , Neglected Diseases/drug therapy , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/drug therapy , Blood/parasitology , Cerebrospinal Fluid/parasitology , Child , Chronic Disease Indicators , Cote d'Ivoire/epidemiology , Female , Humans , Neglected Diseases/parasitology , Patient Care Management/economics , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/parasitology
15.
Infect Genet Evol ; 82: 104303, 2020 08.
Article in English | MEDLINE | ID: mdl-32247869

ABSTRACT

A good understanding of tsetse fly population structure and migration is essential to optimize the control of sleeping sickness. This can be done by studying the genetics of tsetse fly populations. In this work, we estimated the genetic differentiation within and among geographically separated Glossina palpalis palpalis populations from Cameroon, the Democratic Republic of the Congo and Ivory Coast. We determined the demographic history of these populations and assessed phylogenetic relationships among individuals of this sub-species. A total of 418 tsetse flies were analysed: 258 were collected in four locations in Cameroon (Bipindi, Campo, Fontem and Bafia), 100 from Azaguié and Nagadoua in Ivory Coast and 60 from Malanga in the Democratic Republic of the Congo. We examined genetic variation at three mitochondrial loci: COI, COII-TLII, and 16S2. 34 haplotypes were found, of which 30 were rare, since each was present in <5% of the total number of individuals. No haplotype was shared among Cameroon, Ivory Coast and the Democratic Republic of the Congo populations. The fixation index FST of 0.88 showed a high genetic distance between Glossina palpalis palpalis populations from the three countries. That genetic distance was correlated to the geographic distance between populations. We also found that there is substantial gene flow between flies from locations separated by over 100 km in Cameroon and between flies from locations separated by over 200 km in Ivory Coast. Demographic parameters suggest that the tsetse flies from Fontem (Cameroon) had reduced in population size in the recent past. Phylogenetic analysis confirms that Glossina palpalis palpalis originating from the Democratic Republic of the Congo are genetically divergent from the two other countries as already published in previous studies.


Subject(s)
Insect Proteins/genetics , Phylogeny , Tsetse Flies/genetics , Africa, Central , Africa, Western , Animals , Gene Flow , Genes, Mitochondrial , Genetics, Population , Haplotypes , Polymorphism, Single-Stranded Conformational
16.
Parasite ; 26: 68, 2019.
Article in English | MEDLINE | ID: mdl-31755862

ABSTRACT

The World Health Organization (WHO) has set the goal of gambiense-Human African trypanosomiasis (HAT) elimination as a public health problem for 2020 and interruption of transmission in humans for 2030. In this context, it is crucial to monitor progress towards these targets using accurate tools to assess the level of transmission in a given area. The aim of this study was to investigate the relevance of the immune trypanolysis test (TL) as a population-based bioassay to evaluate Trypanosoma brucei gambiense transmission in various epidemiological contexts. Significant correlations were observed between HAT endemicity levels and the percentage of TL-positive individuals in the population. TL therefore appears to be a suitable population-based biomarker of the intensity of transmission. In addition to being used as a tool to assess the HAT status at an individual level, assessing the proportion of TL positive individuals in the population appears as a promising and easy alternative to monitor the elimination of gambiense HAT in a given area.


TITLE: Le test immunitaire de tryanolyse comme biomarqueur prometteur pour le suivi de l'élimination de la trypanosomose humaine africaine à gambiense. ABSTRACT: L'Organisation mondiale de la santé a fixé comme objectif l'élimination de la trypanosomose humaine africaine (THA) à gambiense en tant que problème de santé publique à l'horizon 2020 et l'interruption de la transmission humaine pour 2030. Dans ce contexte, il est crucial de suivre les progrès accomplis vers ces objectifs à l'aide d'outils précis pour évaluer le niveau de transmission dans une zone donnée. Le but de ce travail était d'étudier la pertinence du test immunitaire de trypanolyse (TL) en tant que marqueur biologique populationnel pour évaluer la transmission de Trypanosoma brucei gambiense dans divers contextes épidémiologiques. Des corrélations significatives ont été observées entre les niveaux d'endémicité de la THA et le pourcentage d'individus positifs à la TL dans la population. La TL apparaît donc comme un biomarqueur populationnel de l'intensité de la transmission. En plus d'être utilisé comme un outil pour évaluer le statut de la THA au niveau individuel, l'évaluation de la proportion d'individus positifs à la TL dans la population apparaît comme une alternative simple et prometteuse pour surveiller l'élimination de la THA à gambiense dans une zone donnée.


Subject(s)
Biological Assay/methods , Cytotoxicity Tests, Immunologic/methods , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/blood , Trypanosomiasis, African/diagnosis , Africa, Western , Disease Eradication , Humans
17.
Infect Genet Evol ; 75: 103963, 2019 11.
Article in English | MEDLINE | ID: mdl-31301424

ABSTRACT

Glossina palpalis palpalis remains the major vector of sleeping sickness in Côte d'Ivoire. The disease is still active at low endemic levels in Bonon and Sinfra foci in the western-central part of the country. In this study, we investigated the impact of a control campaign on G. p. palpalis population structure in Bonon and Sinfra foci in order to adapt control strategies. Genetic variation at microsatellite loci was used to examine the population structure of different G. p. palpalis cohorts before and after control campaigns. Isolation by distance was observed in our sampling sites. Before control, effective population size was high (239 individuals) with dispersal at rather short distance (731 m per generation). We found some evidence that some of the flies captured after treatment come from surrounding sites, which increased the genetic variance. One Locus, GPCAG, displayed a 1000% increase of subdivision measure after control while other loci only exhibited a substantial increase in variance of subdivision. Our data suggested a possible trap avoidance behaviour in G. p. palpalis. It is important to take into account and better understand the possible reinvasion from neighboring sites and trap avoidance for the sake of sustainability of control campaigns effects.


Subject(s)
Insect Control , Insect Vectors , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/transmission , Tsetse Flies/genetics , Animals , Cote d'Ivoire/epidemiology , Female , Genotype , Humans , Sex Characteristics , Trypanosomiasis, African/prevention & control
18.
PLoS Negl Trop Dis ; 11(10): e0005993, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29045405

ABSTRACT

BACKGROUND: Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d'Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. METHODOLOGY/PRINCIPAL FINDINGS: 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). CONCLUSION: This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of "one health" approaches to reach HAT elimination and contribute to AAT control in the studied foci.


Subject(s)
Cattle Diseases/parasitology , Disease Reservoirs/veterinary , Swine Diseases/parasitology , Trypanosoma brucei gambiense , Trypanosomiasis, African/parasitology , Animals , Cattle , Cattle Diseases/epidemiology , Cote d'Ivoire/epidemiology , Humans , Swine , Swine Diseases/epidemiology , Trypanosomiasis, African/epidemiology
19.
Parasite ; 23: 51, 2016.
Article in English | MEDLINE | ID: mdl-27849517

ABSTRACT

Significant efforts to control human African trypanosomiasis (HAT) over the three past decades have resulted in drastic reductions of disease prevalence in Côte d'Ivoire. In this context, the costly and labor-intensive active mass screening strategy is no longer efficient. In addition to a more cost-effective passive surveillance system being implemented in this low-prevalence context, our aim was to develop an alternative targeted active screening strategy. In 2012, we carried out a targeted door-to-door (TDD) survey focused on the immediate vicinities of former HAT patients detected in the HAT focus of Bonon and compared the results to those obtained during classical active mass screening (AMS) surveys conducted from 2000 to 2012 in the same area. The TDD that provides a friendlier environment, inviting inhabitants to participate and gain awareness of the disease, detected significantly more HAT cases than the AMS. These results suggest that the TDD is an efficient and useful strategy in low-prevalence settings where very localized transmission cycles may persist and, in combination with passive surveillance, could help in eliminating HAT.


Subject(s)
Trypanosomiasis, African/epidemiology , Agglutination Tests , Cote d'Ivoire/epidemiology , Humans , Mass Screening , Prevalence , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...